A Polynomial Time Incremental LearningAlgorithmRajesh ParekhCodrin
نویسندگان
چکیده
We present an eecient incremental algorithm for learning deterministic nite state automata (DFA) from labeled examples and membership queries. This algorithm is an extension of Angluin's ID procedure to an incremental framework. The learning algorithm is intermittently provided with labeled examples and has access to a knowledgeable teacher capable of answering membership queries. The learner constructs an initial hypothesis from the given set of labeled examples and the teacher's responses to membership queries. If an additional example observed by the learner is inconsistent with the current hypothesis then the hypothesis is modiied minimally to make it consistent with the new example. The update procedure ensures that the modiied hypothesis is consistent with all examples observed thus far. The algorithm is guaranteed to converge to a minimum state DFA corresponding to the target when the set of examples observed by the learner includes a live complete set. We prove the convergence of this algorithm and analyze its time and space complexities. R esum e Nous donnons un algorithme incr emental eecace pour l'apprentissage d'au-tomates d' etats nis a partir d'exemples etiquet es et de demandes d'apparte-nance. Cet algorithme est une extension a un cadre incr emental de la proc edure ID d'Angluin. L'algorithme d'apprentissage ree coit de mani ere intermittente des exemples de mots etiquet es et a acc es a un ((professeur)) capable de r epondre a des questions d'appartenance au langage-cible. L'algorithme construit une hy-poth ese initiale a partir du jeu d'exemples donn es et des r eponses du professeur. Si un example suppl ementaire trouv e par l'algorithme contredit l'hypoth ese courante, alors celle-ci est modii ee de mani ere minimale, aan d' eliminer la contradiction. La proc edure de modiication assure la compatibilit e de la nou-velle hypoth ese avec tous les exemples pr ec edents. L'algorithme converge vers un automate d' etats nis minimal en nombre d' etats reconnaissant le langage-cible quand le jeu d'exemples trait es comprend un ensemble ((live complete)). Nous prouvons la convergence de cet algorithme et analysons ses complexit es en espace et temps. Abstract. We present an eecient incremental algorithm for learning deterministic nite state automata (DFA) from labeled examples and membership queries. This algorithm is an extension of Angluin's ID procedure to an incremental framework. The learning algorithm is intermittently provided with labeled examples and has access to a knowledgeable teacher capable of answering membership queries. The learner constructs an …
منابع مشابه
On the Enumeration of all Minimal Triangulations
We present an algorithm that enumerates all the minimal triangulations of a graph in incremental polynomial time. Consequently, we get an algorithm for enumerating all the proper tree decompositions, in incremental polynomial time, where “proper” means that the tree decomposition cannot be improved by removing or splitting a bag.
متن کاملNaive Infinite Enumeration of Context-free Languages in Incremental Polynomial Time
We consider the naive bottom-up concatenation scheme for a context-free language and show that this scheme has the incremental polynomial time property. This means that all members of the language can be enumerated without duplicates so that the time between two consecutive outputs is bounded by a polynomial in the number of strings already generated.
متن کاملIncremental flow
This paper defines an incremental version of the maximum flow problem. In this model, the capacities increase over time and the resulting solution is a sequence of flows that build on each other incrementally. Thus far, incremental problems considered in the literature have been built on NP-complete problems. To the best of our knowledge, our results are the first to find a polynomial time prob...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Enumerating Spanning and Connected Subsets in Graphs and Matroids
We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasi-polynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected subgraphs of a given graph can be generated in incremental polynomial time.
متن کاملENUMERATING SPANNING AND CONNECTED SUBSETS IN GRAPHS AND MATROIDS ̃y
We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasi-polynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected subgraphs of a given graph can be generated in incremental polynomial time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998